https://ogma.newcastle.edu.au/vital/access/ /manager/Index ${session.getAttribute("locale")} 5 Senescence of IPF lung fibroblasts disrupt alveolar epithelial cell proliferation and promote migration in wound healing https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:45148 Wed 26 Oct 2022 19:13:19 AEDT ]]> Fibulin1C peptide induces cell attachment and extracellular matrix deposition in lung fibroblasts https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:22104 in vitro measures of fibrosis: cell attachment, proliferation and viability, and ECM deposition, were examined. Among these peptides, peptide 1C1 (FBLN1C1) enhanced ASM cell and fibroblast attachment. FBLN1C1 increased mitochondrial activity and proliferation in fibroblasts. In addition, FBLN1C1 stimulated fibulin1 deposition in PF and COPD fibroblasts, and augmented fibronectin and perlecan deposition in all three groups. Peptides FBLN1C2 to FBLN1C7 had no activity. The active fibulin-1C peptide identified in this study describes a useful tool for future studies. Ongoing investigation of the role of fibulin-1 may reveal the mechanisms underlying the pathphysiology of chronic lung diseases.]]> Wed 11 Apr 2018 16:41:15 AEST ]]> Mitochondrial dysfunction contributes to the senescent phenotype of IPF lung fibroblasts https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:45701 Tue 28 Mar 2023 15:44:53 AEDT ]]> A senescence bystander effect in human lung fibroblasts https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:45373 2O2 or etoposide; (ii) LFs derived from IPF patients (IPF-LFs) with a high baseline of senescence; or (iii) senescence-induced A549 cells, an AEC line. Additionally, ratios of non-senescent Ctrl-LFs and senescence-induced Ctrl-LFs (100:0, 0:100, 50:50, 90:10, 99:1) were co-cultured and their effect on induction of senescence measured. We demonstrated that exposure of naïve non-senescent Ctrl-LFs to CM from senescence-induced Ctrl-LFs and AECs and IPF-LFs increased the markers of senescence including nuclear localisation of phosphorylated-H2A histone family member X (H2AXγ) and expression of p21, IL-6 and IL-8 in Ctrl-LFs. Additionally, co-cultures of non-senescent and senescence-induced Ctrl-LFs induced a senescent-like phenotype in the non-senescent cells. These data suggest that the phenomenon of “senescence-induced senescence” can occur in vitro in primary cultures of human LFs, and provides a possible explanation for the abnormal abundance of senescent cells in the lungs of IPF patients]]> Thu 27 Oct 2022 12:28:40 AEDT ]]> The fibrogenic actions of lung fibroblast-derived urokinase: a potential drug target in IPF https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:30970 Thu 24 Mar 2022 11:31:57 AEDT ]]> Annexin A2 contributes to lung injury and fibrosis by augmenting factor Xa fibrogenic activity https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:34569 Thu 04 Nov 2021 10:38:24 AEDT ]]> STAT3 regulates the onset of oxidant-induced senescence in lung fibroblasts https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:42174 2) production in senescent fibroblasts. Targeting STAT3 activity using the small-molecule inhibitor STA-21 attenuated IL-6 production, reduced p21 levels, decreased senescence-associated β-galactosidase accumulation, and restored normal mitochondrial function. The results of this study illustrate that stress-induced senescence in lung fibroblasts involves the activation of STAT3, which can be pharmacologically modulated.]]> Fri 26 Aug 2022 08:10:19 AEST ]]> Self DNA perpetuates IPF lung fibroblast senescence in a cGAS-dependent manner https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:46097 P < 0.05, n = 5–8). The targeting of cGAS also attenuated etoposide-induced senescence in Ctrl-LFs (P < 0.05, n = 5–8). Levels of mitochondrial DNA (mDNA) detected by qPCR in the cytosol and medium of IPF-LFs or senescence-induced Ctrl-LFs were higher than Ctrl-LFs at baseline (P < 0.05, n = 5–7). The addition of DNAse I (100 U/ml) deaccelerated IPF-LF senescence (P < 0.05, n = 5), whereas ectopic mDNA or the induction of endogenous mDNA release augmented Ctrl-LF senescence in a cGAS-dependent manner (P < 0.05, n = 5). In conclusion, we provide evidence that cGAS reinforces lung fibroblast senescence involving damaged self DNA. The targeting of cGAS to supress senescent-like responses may have potential important therapeutic implications in the treatment of IPF.]]> Fri 11 Nov 2022 11:23:00 AEDT ]]>